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The logic-based synthesis algorithm developed in this work is an elabora-
tion of, and a significant advance on, a simpler procedure first sketched in [7].
The essential idea is that in designing and constructing a hybrid controller
for a given plant and given specifications, one needs to reason about sets of
plant states, and build up more complicated sets of states by applying various
operators arising from the flows and the specification data. Following [7], we
use modal logic as a clean and elegant formalism in which to conduct such
reasoning about sets of states, and to custom-design operators on sets tai-
lored to the specifications. The logic gives us the technical tools with which
to formulate a general and finitely terminating synthesis algorithm which
applies uniformly to arbitrary differential equations © = F,(x), subject only
to standard assumptions on the existence and uniqueness of solutions, with
finite termination analytically derived from an assumption of compactness.
By formulating these constructions of complex sets of states in the language
of modal logic, we gain the immediate pay-off that the correctness of the
synthesis procedure — that any controller generated by the procedure does
indeed ensure that the closed-loop system satisfies all the performance spec-
ifications — can transparently be shown to be a formal deductive consequence
of a theory of modal formulas that are true of that hybrid automaton model
purely in virtue of the construction.

As an illustrative example, we consider a plant in R? given by three
linear differential equations: the flows of two of them are stable spirals, and
the other flows in horizontal straight lines. For the safety specification, the
Bad region is a disk of radius 2 centred at the origin, together with the
complement of the box [—10,10] x [-10,10]. The two spirals have their
centres lying on the boundary of this box, at the points (—10,0) and at
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(10,0) respectively. The prescribed event sequence behaviour is to proceed
with a clockwise motion, navigating through the partition blocks consisting
of the four quadrants intersected with the complement of Bad. Visually, we
are steering a point z € R? clockwise around the disk and within a bounded
box, using switching sequences chosen from three primitive control actions:
a downwards motion from the left spiral, an upwards motion from the right
spiral, and an across motion, to the right above the horizontal axis and to
the left below that axis. The three flows and the safety and event sequence
specifications for this example are illustrated in Figure 3.
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Figure 1: Three flows in R?, and safety and event sequence specification sets

Modal logic provides a general-purpose framework in which to formalize
a wide variety of operators on sets. In addition to the reachability operators
of flows of differential equations, we also consider the operator which, given



a set A, returns the d-expansion of, or d-ball around A, for some fixed metric
distance § > 0; by this we mean the set of points lying within distance § of
some point in A. The dual notion is the d-contraction of A, meaning the
set of points in A around which one can fit a ball of radius ¢ that still lies
wholly inside A. By using these notions of metric tolerance, we are able
to cleanly formulate and prove a form of robustness or tolerance property
for our synthesis algorithm. Our result is that not only is it the case that
all hybrid trajectories of the resulting closed-loop system H meet the given
specifications, but in addition, all hybrid trajectories arising from certain
bounded variations of H will still meet those specifications. The variation
classes we consider arise by allowing a bounded degree of tolerance of sensor
and actuator imprecision, as well as bounded variations in the differential
equations defining the plant, where the variation depends continuously on a
parameter. Both the latter, traditional formulation of robustness in terms
of plant variation, as well as our notions of tolerance, fall within a larger
framework of robustness concepts for hybrid automata proposed by Horn
and Ramadge in [10].

The modal logic framework also gives us a clean way to separate out the
determination of what sets need to be computed, and the structure and cor-
rectness of the abstract solution algorithm, from the distinct issue of how
and when such an algorithm can be effectively implemented. Effective im-
plementation requires a finitary symbolic means of representing set of states
A CR" | with respect to which the Boolean and modal logic operators can be
effectively evaluated, and furthermore, the representation of sets must be de-
cidable in the sense that it can be determined by finite computation whether
distinct representations are semantically equal (or equivalently, whether a
representation is of the empty set). These are the fundamental issues for
the application and development of symbolic model checking technology to
hybrid and real-time systems [1, 2, 7, 9]. There are two main approaches to
effective implementation, which we briefly outline here.

The first approach works with ezact symbolic representations of state sets
A C R"*, whereby sets are explicitly defined by first-order logic formulas with
variables ranging over the real numbers; for example,

A={(z1, - ,2,) ER* | P(x1, - ,24) >0 A R(z1, - ,2,) #0}

where P and R are polynomials in n variables with rational coefficients. The
application of modal operators translates into first-order logic as the build-
up of formulas using nested quantifiers (3 and V), and the evaluation of the
modal operators can be performed using quantifier elimination tools such
as REDLOG [8] or QEPCAD — although the quantifier elimination algorithm



implemented in those tools has been significantly improved [3]. Using such
tools, our synthesis algorithm can be effectively implemented by exact sym-
bolic means when the specification data sets Bad and E are semi-algebraic
(defined by Boolean combinations of polynomial inequalities), and the plant
equations & = F(z) are defined by a nilpotent matrices, or otherwise have
polynomial flows. The recent work of [12, 13| studies the exact symbolic
computability of reachability operators for flows of a more general subclass
of linear systems. Note, however, that our running example with spiral flows
falls outside this class.

The second approach to effective implementation adopts the strategy of
approrimated representation of sets of states, working with under- or over-
approximations rather than exact representations of sets. Under this ap-
proach, one first discretizes the plant state space X C R" using a finite cell
cover (or partition), e.g. from a finite rectangular grid of boxes on a bounded
space, or using finitely many polyhedra or ellipsoids. For a given set A C X,
an under-approximation can then be obtained by taking the union of all cells
lying inside A, while an over-approximation comes from a union of all cells
which intersect A. For each abstract operator Op on sets used within a syn-
thesis construction or broader model checking framework, one must develop
procedures which given as input a set A represented as a union of cells, re-
turn as output a union of cells which is an under- (or over-) approximation of
the set Op(A). Recent contributions to approximation methods for the basic
forwards and/or backwards reachability operators of differential equations
(and differential inclusions) are variously based on boxes [2, 4, 14, 15, 16],
polyhedra [5] or ellipsoids [11]. Each of these approximation techniques apply
to arbitrary linear differential equations, and in principle, any of them could
serve as a basis for approximated versions of the modal operators used in our
abstract synthesis algorithm. Our first prototype software implementation
is based on a discretization using boxes, and we use its graphic output to
illustrate the steps of the synthesis algorithm on our 2-D example.

At the workshop, this work will be presented in two 20 minute talks, one
each by Davoren and Moor. This second part will present the mathematical
tools of modal logic used in the synthesis algorithm, and our software im-
plementation of the algorithm using an approximated representation of state
sets.

A full paper has been submitted for publication, and is available as a tech-
nical report [6] from the web address: http://arp.anu.edu.au/ davoren/
hybrid_control/hybrid_control.html. There are also links to some video
files of closed-loop simulations of solution controllers for example plant mod-
els and specifications generated by our prototype software implementation.
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